Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.225
Filtrar
1.
J Inorg Biochem ; 255: 112519, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507994

RESUMO

New studies raise the possibility that the higher glucagon (GCG) level present in type 2 diabetes (T2D) is a compensatory mechanism to enhance ß-cell function, rather than induce dysregulated glucose homeostasis, due to an important role for GCG that acts directly within the pancreas on insulin secretion by intra-islet GCG signaling. However, in states of poorly controlled T2D, pancreatic α cell mass increases (overproduced GCG) in response to insufficient insulin secretion, indicating decreased local GCG activity. The reason for this decrease is not clear. Recent evidence has uncovered a new role of heme in cellular signal transduction, and its mechanism involves reversible binding of heme to proteins. Considering that protein tyrosine nitration in diabetic islets increases and glucose-stimulated insulin secretion (GSIS) decreases, we speculated that heme modulates GSIS by transient interaction with GCG and catalyzing its tyrosine nitration, and the tyrosine nitration may impair GCG activity, leading to loss of intra-islet GCG signaling and markedly impaired insulin secretion. Data presented here elucidate a novel role for heme in disrupting local GCG signaling in diabetes. Heme bound to GCG and induced GCG tyrosine nitration. Two tyrosine residues in GCG were both sensitive to the nitrating species. Further, GCG was also demonstrated to be a preferred target peptide for tyrosine nitration by co-incubation with BSA. Tyrosine nitration impaired GCG stimulated cAMP-dependent signaling in islet ß cells and decreased insulin release. Our results provided a new role of heme for impaired GSIS in the pathological process of diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Glucagon/metabolismo , Glucagon/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Heme/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Glucose/metabolismo , Tirosina/química
2.
Am J Physiol Endocrinol Metab ; 326(4): E537-E544, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477876

RESUMO

There is increasing evidence linking bitter taste receptor (BTR) signaling to gut hormone secretion and glucose homeostasis. However, its effect on islet hormone secretion has been poorly characterized. This study investigated the effect of the bitter substance, denatonium benzoate (DB), on hormone secretion from mouse pancreatic islets and INS-1 832/13 cells. DB (0.5-1 mM) augmented insulin secretion at both 2.8 mM and 16.7 mM glucose. This effect was no longer present at 5 mM DB likely due to the greater levels of cellular apoptosis. DB-stimulated insulin secretion involved closure of the KATP channel, activation of T2R signaling in beta-cells, and intraislet glucagon-like peptide-1 (GLP-1) release. DB also enhanced glucagon and somatostatin secretion, but the underlying mechanism was less clear. Together, this study demonstrates that the bitter substance, DB, is a strong potentiator of islet hormone secretion independent of glucose. This observation highlights the potential for widespread off-target effects associated with the clinical use of bitter-tasting substances.NEW & NOTEWORTHY We show that the bitter substance, denatonium benzoate (DB), stimulates insulin, glucagon, somatostatin, and GLP-1 secretion from pancreatic islets, independent of glucose, and that DB augments insulin release via the KATP channel, bitter taste receptor signaling, and intraislet GLP-1 secretion. Exposure to a high dose of DB (5 mM) induces cellular apoptosis in pancreatic islets. Therefore, clinical use of bitter substances to improve glucose homeostasis may have unintended negative impacts beyond the gut.


Assuntos
Ilhotas Pancreáticas , Compostos de Amônio Quaternário , Paladar , Camundongos , Animais , Glucagon/farmacologia , Insulina/farmacologia , Glucose/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Somatostatina/farmacologia , Trifosfato de Adenosina/farmacologia
3.
Endocrinol Metab (Seoul) ; 39(1): 33-39, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38417825

RESUMO

Glucagon has many functions, including the promotion of hepatic glucose production, fatty acid oxidation, thermogenesis, energy consumption, lipolysis, and myocardial contraction, as well as the suppression of lipogenesis, appetite, and gastrointestinal motility. However, it remains unclear which of these functions are physiological and which are pharmacological. Research on glucagon has lagged behind research on insulin because cross-reactivity with glucagon-related peptides in plasma has hindered the development of an accurate measurement system for glucagon. We recently developed a new glucagon sandwich enzyme-linked immunosorbent assay (ELISA) that is more specific and more sensitive to glucagon than the currently used measurement systems. The new sandwich ELISA is expected to contribute to personalized medicine for diabetes through its use in clinical examinations, the diagnosis of the pathophysiological condition of individual diabetes patients, and the choice of a treatment strategy. Efforts are continuing to develop glucagon/glucagon-like peptide-1 receptor dual agonists to improve obesity and fatty liver by enhancing glucagon's appetite-suppressing and lipolysis- and thermogenesis-promoting effects. Thus, glucagon is expected to be applied to new diagnostic and therapeutic strategies based on a more accurate understanding of its functions.


Assuntos
Diabetes Mellitus Tipo 2 , Glucagon , Humanos , Glucagon/farmacologia , Glucagon/fisiologia , Insulina , Glucose , Fígado
4.
Eur J Pharmacol ; 962: 176215, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056618

RESUMO

OBJECTIVE: Dual glucagon-like peptide-1 (GLP-1) and glucagon receptor agonists are therapeutic agents with an interesting liver-specific mode of action suitable for metabolic complications. In this study, dual GLP-1 and glucagon receptor agonist OXM-104 is compared head-to-head with the once-daily dual GLP-1 and glucagon receptor agonist cotadutide and GLP-1 receptor agonist semaglutide to explore the metabolic efficacy of OXM-104. METHODS: The in vitro potencies of OXM-104, cotadutide and semaglutide were assessed using reporter assays. In addition, in vivo efficacy was investigated using mouse models of diet-induced obesity (DIO mice), diabetes (db/db mice) and diet-induced NASH mice (MS-NASH). RESULTS: OXM-104 was found to only activate the GLP-1 and glucagon with no cross-reactivity at the (GIP) receptor. Cotadutide was also found to activate the GLP-1 and glucagon receptors, whereas semaglutide only showed activity at the GLP-1 receptor. OXM-104, cotadutide, and semaglutide elicited marked reductions in body weight and improved glucose control. In contrast, hepatoprotective effects, i.e., reductions in steatosis and fibrosis, as well as liver fibrotic biomarkers, were more prominent with OXM-104 and cotadutide than those seen with semaglutide, demonstrated by an improved NAFLD activity score (NAS) by OXM-104 and cotadutide, underlining the importance of the glucagon receptor. CONCLUSION: These results show that dual GLP-1 and glucagon receptor agonism is superior to GLP-1 alone. OXM-104 was found to be a promising therapeutic candidate for the treatment of metabolic complications such as obesity, type 2 diabetes and NASH.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptores de Glucagon/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Oxintomodulina/farmacologia , Oxintomodulina/uso terapêutico , Glucagon/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
5.
Adv Sci (Weinh) ; 11(6): e2307271, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072640

RESUMO

Chemotherapy is widely used to treat colorectal cancer (CRC). Despite its substantial benefits, the development of drug resistance and adverse effects remain challenging. This study aimed to elucidate a novel role of glucagon in anti-cancer therapy. In a series of in vitro experiments, glucagon inhibited cell migration and tube formation in both endothelial and tumor cells. In vivo studies demonstrated decreased tumor blood vessels and fewer pseudo-vessels in mice treated with glucagon. The combination of glucagon and chemotherapy exhibited enhanced tumor inhibition. Mechanistic studies demonstrated that glucagon increased the permeability of blood vessels, leading to a pronounced disruption of vessel morphology. Signaling pathway analysis identified a VEGF/VEGFR-dependent mechanism whereby glucagon attenuated angiogenesis through its receptor. Clinical data analysis revealed a positive correlation between elevated glucagon expression and chemotherapy response. This is the first study to reveal a role for glucagon in inhibiting angiogenesis and vascular mimicry. Additionally, the delivery of glucagon-encapsulated PEGylated liposomes to tumor-bearing mice amplified the inhibition of angiogenesis and vascular mimicry, consequently reinforcing chemotherapy efficacy. Collectively, the findings demonstrate the role of glucagon in inhibiting tumor vessel network and suggest the potential utility of glucagon as a promising predictive marker for patients with CRC receiving chemotherapy.


Assuntos
Neoplasias Colorretais , Glucagon , Humanos , Animais , Camundongos , Glucagon/farmacologia , Glucagon/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neoplasias Colorretais/patologia , Transdução de Sinais , Linhagem Celular Tumoral
7.
Endocr J ; 71(3): 253-264, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38143085

RESUMO

Maintenance of islet function after in vitro culture is crucial for both transplantation and research. Here we evaluated the effects of encapsulation in alginate fiber on the function of human islets which were distributed by the Alberta Islet Distribution Program. Encapsulated human islets from 15 deceased donors were cultured under 5.5 or 25 mM glucose conditions in vitro. The amounts of C-peptide and glucagon secreted from encapsulated islets into the culture media were measured periodically, and immunohistochemical studies were performed. Encapsulated islets maintained C-peptide and glucagon secretion for more than 75 days in 5 cases; in two cases, their secretion was also successfully detected even on day 180. α- and ß-cell composition and ß-cell survival in islets were unaltered in the fiber after 75 or 180 days of culture. The encapsulated islets cultured with 5.5 mM glucose, but not those with 25 mM glucose, exhibited glucose responsiveness of C-peptide secretion until day 180. We demonstrate that alginate encapsulation enabled human islets to maintain their viability and glucose responsiveness of C-peptide secretion after long-term in vitro culture, potentially for more than for 180 days.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Glucagon/farmacologia , Peptídeo C , Alginatos/farmacologia , Glucose/farmacologia , Insulina/farmacologia
9.
Aging Cell ; 22(12): e13985, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667562

RESUMO

Our previous research has demonstrated that mice lacking functional growth hormone-releasing hormone (GHRH) exhibit distinct physiological characteristics, including an extended lifespan, a preference for lipid utilization during rest, mild hypoglycemia, and heightened insulin sensitivity. They also show a further increase in lifespan when subjected to caloric restriction. These findings suggest a unique response to fasting, which motivated our current study on the response to glucagon, a key hormone released from the pancreas during fasting that regulates glucose levels, energy expenditure, and metabolism. Our study investigated the effects of an acute glucagon challenge on female GHRH knockout mice and revealed that they exhibit reduced glucose production, likely due to suppressed gluconeogenesis. However, these mice showed an increase in energy expenditure. We also observed alterations in pancreatic islet architecture, with smaller islets and a reduction of insulin-producing beta cells but no changes in glucagon-producing alpha cells. Additionally, the analysis of hepatic glucagon signaling showed a decrease in glucagon receptor expression and phosphorylated CREB. In conclusion, our findings suggest that the unique metabolic phenotype observed in these long-lived mice may be partly explained by changes in glucagon signaling. Further exploration of this pathway may lead to new insights into the regulation of longevity in mammals.


Assuntos
Glucagon , Longevidade , Feminino , Camundongos , Animais , Glucagon/metabolismo , Glucagon/farmacologia , Camundongos Knockout , Longevidade/genética , Insulina/metabolismo , Hormônio Liberador de Hormônio do Crescimento , Glucose/metabolismo , Mamíferos/metabolismo
11.
Cardiovasc Diabetol ; 22(1): 128, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254135

RESUMO

BACKGROUND: Glucagon is thought to increase heart rate and contractility by stimulating glucagon receptors and increasing 3',5'-cyclic adenosine monophosphate (cAMP) production in the myocardium. This has been confirmed in animal studies but not in the human heart. The cardiostimulatory effects of glucagon have been correlated with the degree of cardiac dysfunction, as well as with the enzymatic activity of phosphodiesterase (PDE), which hydrolyses cAMP. In this study, the presence of glucagon receptors in the human heart and the inotropic and chronotropic effects of glucagon in samples of failing and nonfailing (NF) human hearts were investigated. METHODS: Concentration‒response curves for glucagon in the absence and presence of the PDE inhibitor IBMX were performed on samples obtained from the right (RA) and left atria (LA), the right (RV) and left ventricles (LV), and the sinoatrial nodes (SNs) of failing and NF human hearts. The expression of glucagon receptors was also investigated. Furthermore, the inotropic and chronotropic effects of glucagon were examined in rat hearts. RESULTS: In tissues obtained from failing and NF human hearts, glucagon did not exert inotropic or chronotropic effects in the absence or presence of IBMX. IBMX (30 µM) induced a marked increase in contractility in NF hearts (RA: 83 ± 28% (n = 5), LA: 80 ± 20% (n = 5), RV: 75 ± 12% (n = 5), and LV: 40 ± 8% (n = 5), weaker inotropic responses in the ventricular myocardium of failing hearts (RV: 25 ± 10% (n = 5) and LV: 10 ± 5% (n = 5) and no inotropic responses in the atrial myocardium of failing hearts. IBMX (30 µM) increased the SN rate in failing and NF human hearts (27.4 ± 3.0 beats min-1, n = 10). In rat hearts, glucagon induced contractile and chronotropic responses, but only contractility was enhanced by 30 µM IBMX (maximal inotropic effect of glucagon 40 ± 8% vs. 75 ± 10%, in the absence or presence of IBMX, n = 5, P < 0.05; maximal chronotropic response 77.7 ± 6.4 beats min-1 vs. 73 ± 11 beats min-1, in the absence or presence of IBMX, n = 5, P > 0.05). Glucagon receptors were not detected in the human heart samples. CONCLUSIONS: Our results conflict with the view that glucagon induces inotropic and chronotropic effects and that glucagon receptors are expressed in the human heart.


Assuntos
Glucagon , Receptores de Glucagon , Ratos , Animais , Humanos , Glucagon/farmacologia , 1-Metil-3-Isobutilxantina/farmacologia , Contração Miocárdica , Coração , Átrios do Coração , Frequência Cardíaca
12.
Arch Med Res ; 54(4): 287-298, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121791

RESUMO

BACKGROUND: Thyroid hormones (active form T3) are naturally potent compounds that influence energy expenditure, cholesterol metabolism, and fat oxidation. T3 would be an effective anti-obesity drug if it would not be delivered to the heart and bones, which leads to serious side effects, such as cardiovascular and bone thyrotoxicity, muscle wasting, and so on. METHODS: In this study, we designed a targeted drug delivery system that is a glucagon-modified liposome to deliver T3 to the liver and adipose tissues. RESULTS: The liposomes exhibited excellent properties, including uniform nanoscale particle size, good physicochemical stability, and adequate drug release behavior. More importantly, the glucagon-modified liposomes were enriched in the liver, which minimized the undesired bone and cardiovascular thyrotoxicity of T3. Compared to the control group, T3-loading glucagon-modified liposomes could effectively decrease body weight, reverse hepatic steatosis, and correct hyperlipidemia and hyperglycemia in ob/ob mice, without the undesired cardiovascular and bone thyrotoxicity. CONCLUSION: These findings indicate that delivery of thyroid hormone by glucagon-modified liposomes may provide an effective strategy for anti-obesity therapy.


Assuntos
Glucagon , Lipossomos , Camundongos , Animais , Glucagon/metabolismo , Glucagon/farmacologia , Glucagon/uso terapêutico , Lipossomos/metabolismo , Lipossomos/farmacologia , Lipossomos/uso terapêutico , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/farmacologia , Hormônios Tireóideos/uso terapêutico , Obesidade/metabolismo , Peso Corporal , Fígado/metabolismo
13.
Mol Cell Endocrinol ; 570: 111932, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080378

RESUMO

OBJECTIVE: Glucagon receptor (GCGR) antagonism elicits antihyperglycemic effects in rodents and humans. The present study investigates whether the well characterised peptide-based GCGR antagonist, desHis1Pro4Glu9-glucagon (Lys12PAL), alters alpha-cell turnover or identity in mice. METHODS: Multiple low-dose streptozotocin (STZ) treated (50 mg/kg bw, 5 days) transgenic GluCreERT2;ROSA26-eYFP mice were employed. STZ mice received twice daily administration of saline vehicle or desHis1Pro4Glu9-glucagon (Lys12PAL), at low- or high-dose (25 and 100 nmol/kg, respectively) for 11 days. RESULTS: No GCGR antagonist induced changes in food or fluid intake, body weight or glucose homeostasis were observed. As expected, STZ dramatically reduced (P < 0.001) islet numbers and increased (P < 0.01) alpha-to beta-cell ratio, which was linked to elevated (P < 0.05) levels of beta-cell apoptosis. Whilst treatment with desHis1Pro4Glu9-glucagon (Lys12PAL) decreased (P < 0.05-P < 0.001) alpha- and beta-cell areas, it also helped restore the classic rodent islet alpha-cell mantle in STZ mice. Interestingly, low-dose desHis1Pro4Glu9-glucagon (Lys12PAL) increased (P < 0.05) alpha-cell apoptosis rates whilst high dose decreased (p < 0.05) this parameter. This difference reflects substantially increased (P < 0.001) alpha-to beta-cell transdifferentiation following high dose desHis1Pro4Glu9-glucagon (Lys12PAL) treatment, which was not fully manifest with low-dose therapy. CONCLUSIONS: Taken together, the present study indicates that peptidic GCGR antagonists can positively influence alpha-cell turnover and lineage in identity in multiple low-dose STZ mice, but that such effects are dose-related.


Assuntos
Insulina , Receptores de Glucagon , Humanos , Camundongos , Animais , Hiperplasia , Glucagon/farmacologia , Glicemia
14.
Physiol Rep ; 11(6): e15597, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36946315

RESUMO

The inotropic effects of glucagon have been recognized for many years, but it has remained unclear whether glucagon signaling is beneficial to cardiac function. We evaluated the effects of glucagon alone and in combination with the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide in the isolated perfused rat heart. The isolated perfused rat heart was used to investigate the initial inotropic and chronotropic effects of glucagon and exenatide during aerobic perfusion, and recovery of contractile function following ischaemia/reperfusion. Glucagon, but not exenatide, elicited an acute chronotropic and inotropic response during aerobic perfusion of the rat heart. Compared with control, glucagon improved recovery of left ventricular developed pressure (LVDP) by 33% (p < 0.05) and rate-pressure product (RPP) by 66% (p < 0.001) following ischaemia/reperfusion and amplified the mild recovery enhancement elicited by exenatide in a dose-dependent manner. Glucagon shows inotropic properties in the isolated perfused rat heart and improves contractile recovery following ischaemia/reperfusion, both alone and when co-administered with a GLP-1 receptor agonist. Glucagon and exenatide, a GLP-1 receptor agonist, combine to stimulate greater recovery of postischaemic contractile function in the Langendorff heart. Glucagon was inotropic and chronotropic, yet this initial effect decreased over time and did not account for the increased contractility observed postischaemia/reperfusion.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucagon , Ratos , Animais , Exenatida/farmacologia , Glucagon/farmacologia , Coração , Reperfusão , Contração Miocárdica , Isquemia
17.
Diabetes Obes Metab ; 25(2): 556-569, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36305474

RESUMO

Glucagon exerts multiple hepatic actions, including stimulation of glycogenolysis/gluconeogenesis. The liver plays a crucial role in chronic inflammation by synthesizing proinflammatory molecules, which are thought to contribute to insulin resistance and hyperglycaemia. Whether glucagon affects hepatic expression of proinflammatory cytokines and acute-phase reactants is unknown. Herein, we report a positive relationship between fasting glucagon levels and circulating interleukin (IL)-1ß (r = 0.252, p = .042), IL-6 (r = 0.230, p = .026), fibrinogen (r = 0.193, p = .031), complement component 3 (r = 0.227, p = .024) and high sensitivity C-reactive protein (r = 0.230, p = .012) in individuals without diabetes. In CD1 mice, 4-week continuous treatment with glucagon induced a significant increase in circulating IL-1ß (p = .02), and IL-6 (p = .001), which was countered by the contingent administration of the glucagon receptor antagonist, GRA-II. Consistent with these results, we detected a significant increase in the hepatic activation of inflammatory pathways, such as expression of NLRP3 (p < .02), and the phosphorylation of nuclear factor kappaB (NF-κB; p < .02) and STAT3 (p < .01). In HepG2 cells, we found that glucagon dose-dependently stimulated the expression of IL-1ß (p < .002), IL-6 (p < .002), fibrinogen (p < .01), complement component 3 (p < .01) and C-reactive protein (p < .01), stimulated the activation of NLRP3 inflammasome (p < .01) and caspase-1 (p < .05), induced the phosphorylation of TRAF2 (p < .01), NF-κB (p < .01) and STAT3 (p < .01). Preincubating cells with GRA-II inhibited the ability of glucagon to induce an inflammatory response. Using HepaRG cells, we confirmed the dose-dependent ability of glucagon to stimulate the expression of NLRP3, the phosphorylation of NF-κB and STAT3, in the absence of GRA-II. These results suggest that glucagon has proinflammatory effects that may participate in the pathogenesis of hyperglycaemia and unfavourable cardiometabolic risk profile.


Assuntos
NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Glucagon/farmacologia , Complemento C3/farmacologia , Interleucina-6 , Inflamassomos/metabolismo , Fígado/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia
18.
J Virol ; 96(23): e0102022, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36394315

RESUMO

Hepatitis B virus (HBV) is a major risk factor for serious liver diseases. The liver plays a unique role in controlling carbohydrate metabolism to maintain the glucose level within the normal range. Chronic HBV infection has been reported to associate with a high prevalence of diabetes. However, the detailed molecular mechanism underlying the potential association remains largely unknown. Here, we report that liver-targeted delivery of small HBV surface antigen (SHBs), the most abundant viral protein of HBV, could elevate blood glucose levels and impair glucose and insulin tolerance in mice by promoting hepatic gluconeogenesis. Hepatocytes with SHB expression also exhibited increased glucose production and expression of gluconeogenic genes glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase (PEPCK) in response to glucagon stimulation. Mechanistically, SHBs increased cellular levels of cyclic AMP (cAMP) and consequently activated protein kinase A (PKA) and its downstream effector cAMP-responsive element binding protein (CREB). SHBs-induced activation of CREB enhanced transcripts of gluconeogenic genes, thus promoting hepatic gluconeogenesis. The elevated cAMP level resulted from increased transcription activity and expression of adenylyl cyclase 1 (AC1) by SHBs through a binary E-box factor binding site (BEF). Taken together, we unveiled a novel pathogenic role and mechanism of SHBs in hepatic gluconeogenesis, and these results might highlight a potential target for preventive and therapeutic intervention in the development and progression of HBV-associated diabetes. IMPORTANCE Chronic HBV infection causes progressive liver damage and is found to be a risk factor for diabetes. However, the mechanism in the regulation of glucose metabolism by HBV remains to be established. In the current study, we demonstrate for the first time that the small hepatitis B virus surface antigen (SHBs) of HBV elevates AC1 transcription and expression to activate cAMP/PKA/CREB signaling and subsequently induces the expression of gluconeogenic genes and promotes hepatic gluconeogenesis both in vivo and in vitro. This study provides a direct link between HBV infection and diabetes and implicates that SHBs may represent a potential target for the treatment of HBV-induced metabolic disorders.


Assuntos
Gluconeogênese , Antígenos de Superfície da Hepatite B , Hepatite B Crônica , Animais , Camundongos , Antígenos de Superfície/metabolismo , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucagon/metabolismo , Glucagon/farmacologia , Gluconeogênese/genética , Glucose/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL
19.
Cell Metab ; 34(11): 1654-1674, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323234

RESUMO

The evolution of glucagon has seen the transition from an impurity in the preparation of insulin to the development of glucagon receptor agonists for use in type 1 diabetes. In type 2 diabetes, glucagon receptor antagonists have been explored to reduce glycemia thought to be induced by hyperglucagonemia. However, the catabolic actions of glucagon are currently being leveraged to target the rise in obesity that paralleled that of diabetes, bringing the pharmacology of glucagon full circle. During this evolution, the physiological importance of glucagon advanced beyond the control of hepatic glucose production, incorporating critical roles for glucagon to regulate both lipid and amino acid metabolism. Thus, it is unsurprising that the study of glucagon has left several paradoxes that make it difficult to distill this hormone down to a simplified action. Here, we describe the history of glucagon from the past to the present and suggest some direction to the future of this field.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Humanos , Glucagon/farmacologia , Glucagon/metabolismo , Receptores de Glucagon/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Células Secretoras de Glucagon/metabolismo
20.
J Pharm Pharmacol ; 74(12): 1758-1764, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36206181

RESUMO

OBJECTIVES: The antimalarial drug artemether is suggested to effect pancreatic islet cell transdifferentiation, presumably through activation γ-aminobutyric acid receptors, but this biological action is contested. METHODS: We have investigated changes in α-cell lineage in response to 10-days treatment with artemether (100 mg/kg oral, once daily) on a background of ß-cell stress induced by multiple low-dose streptozotocin (STZ) injection in GluCreERT2; ROSA26-eYFP transgenic mice. KEY FINDINGS: Artemether intervention did not affect the actions of STZ on body weight, food and fluid intake or blood glucose. Circulating insulin and glucagon were reduced by STZ treatment, with a corresponding decline in pancreatic insulin content, which were not altered by artemether. The detrimental changes to pancreatic islet morphology induced by STZ were also evident in artemether-treated mice. Tracing of α-cell lineage, through co-staining for glucagon and yellow fluorescent protein (YFP), revealed a significant decrease of the proportion of glucagon+YFP- cells in STZ-diabetic mice, which was reversed by artemether. However, artemether had no effect on transdifferentiation of α-cells into ß-cells and failed to augment the number of bi-hormonal, insulin+glucagon+, islet cells. CONCLUSIONS: Our observations confirm that artemisinin derivatives do not impart meaningful benefits on islet cell lineage transition events or pancreatic islet morphology.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Insulina/metabolismo , Glucagon/metabolismo , Glucagon/farmacologia , Transdiferenciação Celular , Diabetes Mellitus Experimental/metabolismo , Artemeter/farmacologia , Artemeter/metabolismo , Artemeter/uso terapêutico , Glicemia , Estreptozocina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...